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Summary. This study addresses the consequences of 
eliminating terms such as x 2 and x 3 from genetic 
equations when the variable x is known to be small. 
This paper indicates logically that to assign such terms 
a value of 0.0 requires knowing the magnitude of the 
coefficients for each of these terms as well as the 
magnitude of all other terms in a given expression. 
Since most genetic expressions of interest involve 
several unknowns, the elimination of these terms 
appears difficult to justify in most situations. The effects 
of the elimination of a single term from an expression 
in a classical plant breeding paper were investigated as a 
simple exemplifying case. In the example, the simplified 
equation for change in population mean with selection 
sometimes greatly overestimated the response to selec- 
tion and in some cases also altered conclusions as to 
best procedure. Though simplified equations are 
usually much more tractable and interpretable, the bias 
which is introduced into the research results and the 
potential for propagation of such biases in subsequent 
studies indicates that no term can be uncritically 
ignored in a genetic equation. The obvious alternatives 
are (1) do not simplify by eliminating terms, (2) 
perform a complete error analysis, or (3) restrict the 
range of values for variables so that terms can be 
justifiably eliminated in the error analysis. 
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Introduction 

Theoretical quantitative geneticists have, with some 
success, developed algebraic expressions predicting 
relative rates of improvement in population means with 
selection for various breeding methods under optimum 
and some interesting non-optimum selection condi- 
tions. Such research by quantitative geneticists has 
been taunted as their most important contribution to 
breeding. This conclusion is debatable, but this theoret- 
ical research has obvious and immediate applications 
to plant breeding. 

To briefly outline such theoretical work, a parsimo- 
nious description of a genetic process is developed into 
an algebraic expression which the researcher manipu- 
lates to produce interpretable or meaningful equations, 
either stochastic or deterministic. If interpretable equa- 
tions are not forthcoming, a numerical analysis may 
augment or replace analytical expressions and provide 
useful interpretation of the results. 

The objective of this research is to scrutinize a small 
but potentially critical procedural point which occurs 
with some regularity in the development of response to 
selection equations and sporadically in other genetic 
theory research. Consider a model where x represents 
the change in gene frequency in response to selection 
or some other variable which is expected to be small. 
With an x much less than 1.0 and near 0.0, the square, 
cube, and higher exponentials of x are much closer to 
0.0 and thus can be ignored because they are negligible. 
Then the equation is simplified by elimination of all 
terms involving x 2 and x 3. 

Using this logic, expressions may be greatly reduced 
in complexity and those expressions which did not lend 
themselves to interpretation may be interpretable when 
expressed as linear in x. Also intractable equations may 
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be sufficiently s implif ied that they can be incorporated 
into the next step o f  some mode led  procedure  and that 
step becomes solvable. The value o f  the e l iminat ion of  
the higher  order  terms o f  x usually increases the earl ier  
it is used in model  development .  

The logic o f  this e l iminat ion of  the higher  powers of  
x is correct in the context presented which can be 
represented as the following expression: 

y - - x + x  2 - -x  (l  +X) (1) 

where y = x  implies  (1 + x ) =  1 and that  x is near  0.0. 
The difficulty with equat ion (1) is that it rarely, i f  ever, 
occurs in any useful genetic model .  The common  
expression involving x in its s implest  form is the 
following: 

y = A x  + B x  2 = x ( A  + Bx)  (2)  

where y = Ax implies  that  (A + Bx)=  A. To simplify this 
equat ion it is necessary that  Bx approach  0.0 which is a 
certainty when both B and x are near  zero. Another  
possibly sufficient condi t ion is that x be near  zero and 
that  the ratio (A/B)  be very large. In many  model ing 
situations the complexi ty  o f  a given expression or the 
existence of  r andom variables o f  unknown magni tude,  
such as A and B, frustrates any de te rmina t ion  that 
these requirements  have been met. The real p roblem 
arises that  the simplif ied predict ive equations not  only 
approx imate  natura l  processes but  also approximate  
the original  pars imonious  in terpreta t ion o f  a genetic 
process. Thus a bias is in t roduced into an expression 
which may  alter conclusions and be propoga ted  in 
subsequent  studies. 

Error ana lys i s  

In the fi terature there is no systematic t reatment  of  the 
bias or error  in genetic equat ions in t roduced with the 
e l iminat ion o f  terms. Such analysis may  be borrowed 
from that  sometimes used in computer  science and 
s imulat ion studies (Chapter  3, Kennedy  and Gent le  
1980). There are the direct error  analysis, which in- 
dicates the magni tude  o f  error  at each computa t iona l  
step, and  the inverse error  analysis, where bias is 
measured  only in the final results. Even these analyses 
may  not  be informative about  the potent ial  for altering 
the conclusions o f  compara t ive  studies which are often 
the explicit  objectives o f  research on the responses to 
selection. 

E x a m p l e  

The elimination of a single term from an equation for response 
to selection is used to demonstrate the potential effects on 

estimates and conclusions in comparative studies. Comstock 
etal. (1949) derived a response equation to compare a 
breeding procedure he introduced called reciprocal recurrent 
selection (RRS) to a test cross procedure (TX) for improve- 
ment of the interpopulation mean. The procedures compared 
are outlined below. 

Assume there are two populations designated C and D in 
which plants are fertilized with pollen from a foreign popula- 
tion. The half-sib progenies of each plant are then grown and 
evaluated and the performance of these progenies are used as 
criteria for selection of best parents in a population. With RRS 
the foreign pollen placed on plants of population C is a 
representative sample from population D and that on plants of 
D comes from population C. This procedure is compared to 
the TX procedure where fertilization is effected in populations 
C and D using pollen from a third population designated T. 

Comstock et al. (1949) developed equations for change in 
mean genotypic value with selection at a single locus with two 
genes (B and b) and diploid inheritance. The frequencies of 
gene B in populations C, D, and T are, respectively, p, r, and v. 
Symbols dp and dr indicate the changes in gene frequencies p 
and r, respectively, with selection. Population means are 
modeled with parameters a and u as indicated in Table 1. The 
change in population mean (AX) is as follows: 

AY~ =[dp (1 + a) + dr (1 + a) - 2 ar (dp) -  2 ap (dr) - 
2 a (dp) (dr)] u (3) 

Equation (3) was then simplified by assuming dp and dr 
would be small and that their crossproduct could be ignored 
to give the following simplified expression: 

AX =[dp (1 + a) + dr (1 + a) - 2 ar (dp ) -  2 ap (dr)] u (4) 

Hereafter equations (3) and (4) are referred to, respectively, as 
the exact and approximate equations for change in population 
means with selection. The expression for change in gene 
frequency with selection in population C is: 

dp =p  (1 - p) (1 +a  - 2 at) sc (5) 

where t is frequency of gene B in the pollen parent (either v or 
r in this case), c is the ratio u/(4 Vy). s, and s is the selection 
differential in multiples of the standard deviation of progeny 
means (Vy)" s. The dr was similarly calculated using the gene 
frequency r. When dp and dr were calculated the value of c was 
assumed to be 1.0 for computational simplicity. 

Three types of genic action models are reported here in 
some detail: simple dominance and two types of overdomi- 
nance. The RRS procedure was initially developed to exploit 
any performance advantage due to overdominance genic 
action. 

The exact error, which is the deviation of the approximate 
prediction from the exact prediction expressed as a percentage 
of the exact prediction, is indicated in Fig. 1 for several genetic 

Table 1. Genotypic values and assigned values for three types 
of modeled genic action at the digenic diploid locus 

Genotype Genotypic Modeled genic action 
value 

Simple Overdominance 
dominance 

Type 1 Type 2 

BB 2u 1.0 0.5 0.1 
Bb u+au  1.0 1.0 1.0 
bb 0 0.0 0.0 0.0 
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situations. This figure indicates the error for increasing or 
decreasing values of dp and dr of 0.0 to 0.5 independent of 
selection procedure. Thus this figure indicates the overesti- 
mates of A,X by equation (4) but is not informative about any 
comparison of RRS and TX procedures. 

The comparison of procedures was made by calculating 
expected gains with selection with approximate and exact 
equations and then determining if conclusions made with the 
approximate equation were inaccurate. The comparisons were 
made at frequency increments of 0.1 (Fig. 2). 

With complete and incomplete dominance (not shown) 
the conclusions as to best procedure were the same for the 
approximate and exact equations. But with overdominance 
the approximate equation indicated incorrectly the inferiority 
of the RRS procedure for about 10% of the comparison with 
overdominance type 1 and 12% of the comparisons with over- 
dominance type 2 as shown in Fig. 2. With reference to Fig. 2, 
57% of the times that the approximate equation indicated the 
superiority of the TX procedure it was in error. 

Discussion 

The mathematical models o f  genetic events are expected 
to approximate the results in any given, real data 
situation. The models developed incorporate simpli- 
fying assumptions first to remove "noise" from the 
event by eliminating factors which are considered 
extraneous or unimportant  and second to make cal- 
culations tractable and interpretable. Usually the sim- 
plifying assumptions are indicated in a paper and, 
though their precise effects on the final conclusions 
may not be obvious, it is understood that results should 
be considered within the framework of  the simplifying 
assumptions. The limitations o f  theoretical results are 
usually acknowledged in the better papers and have 
been the topic o f  other papers (Robertson 1963; 
Kempthorne 1977). 

In contrast the consequences o f  elimination o f  a 
term from a genetic equation because it appeared 
negligible are not always acknowledged and have 
received little critical attention. This paper, using the 
simplest possible example of  equation simplification 
through term elimination, has demonstrated the 
potential for developing genetic equations which only 
approximate the genetic process which was to be 
modeled. The potential also exists for development, in 
the extreme situation, o f  equations whose results are 
the antithesis of  the process modeled. 

There are several solutions to this problem with 
equation simplification the most obvious of  which is to 
not eliminate any terms from the genetic equation. This 
approach may result in intractable equations and 
certainly will result in more complex expressions which 
may or may not be interpretable analytically. 

An alternative is to perform an error analysis, as 
might be found in a computer simulation paper, on the 
simplified equations. Equation complexity may frustrate 
any such error analysis and the analysis may greatly 
exceed the effort expended on development o f  the 
original equation. Even with such analysis, decision 
criteria will have to be developed on how much error is 
tolerable. 

The third alternative is to acknowledge what terms 
have been eliminated and restrict the values of  the 
other variables forcing some terms to zero. A limited 
error analysis might be necessary to verify that elimi- 
nated terms are negligible. The interpretation o f  the 
results would then be made within the context of  
restricted values of  the variables. Probably, simplified 
equations which alter qualitative results should not be 
used, but simplified equations that result in quantita- 
tive changes in the results without altering conclusions 
may be used in some situations. 

None of  these alternatives is as easy as ignoring 
this procedural problem. But this author suggests the 
potential for developing and propogating misinforma- 
tion in genetic theory should deter theoreticians from 
uncritical elimination of  any term in a genetic equation. 
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